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We study the analytic structure of thermodynamic functions at first-order phase 
transitions in systems with short-range interactions and in particular in the 
two-dimensional Ising model. We analyze the nature of the approximation of 
the d = 2 system by an N • oo strip. Investigation of the structure of the 
eigenvalues of the transfer matrix in the vicinity of H = 0 in the complex H 
plane allows us to define a new function which provides rapidly convergent 
approximations to the stable free energy f and its derivatives for all H ~ 0. This 
new function is used for numerical calculation of the coefficients C, in the 
power series expansions of the magnetization m in the form m ( H ) =  1 + 
~ C , ( H -  Ho) ~ for various H0 >i 0. The resulting series are studied by conven- 
tional methods. We confirm recent series analysis results on the existence of the 
droplet model type essential singularity at H = 0. Evidence is found for a 
spinodal at H = Hsp (T) < 0. 

KEY WORDS: First-order phase transitions; analytic continuation; meta- 
stable states; Ising model; essential singularity; spinodal. 

1. INTRODUCTION 

The problem of analytic continuation of thermodynamic functions arises 
when metastable phases are described. The theory of metastability at 
first-order phase transitions is a challenging subject for which a complete 
understanding is still lacking. Several rigorous results are available (1-3) in 
the simplest models (see Ref. 1 for a review), as well as negative results in 
more general situations. (4) Most of the known methods are approximate or 
phenomenological. Historically, the simplest approach to metastability is 
obtained with the mean-field type models: van der Waals (liquid-gas) and 
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Currie-Weiss (ferromagnet), from which much of our intuition on me- 
tastability comes. 

The droplet model, (5'6) which accounts for the nucleation processes 
phenomenologically by considering the most probable compact dropletlike 
configurations, predicts an essential singularity (8) of thermodynamic func- 
tions at the coexistence curve. Therefore an analytic continuation to the 
metastable region, if possible, must be performed by going to complex field 
values. The nature of this singularity is of considerable theoretical interest 
and was studied recently by several methods in the two-dimensional Ising 
model. Lattice models with the ferromagnetic transition are usually the 
simplest to be investigated because the nature of the transition is well 
understood, the position of the coexistence line is known (H = 0, where H 
is the magnetic field), and also because the spontaneous symmetry breaking 
(of the H~--~ - H  symmetry), which is associated with this first order phase 
transition, is easily recognized and visualized. 

The method of Ref. 8 is based on the analysis of renormalization 
group flows in the vicinity of the T = 0, H = 0 fixed point (see also Ref. 9 
for a discussion of such flows) and predicts a singularity at H = 0. There is 
some controversy (1~ over whether this method gives the form of the 
singularity consistent with different variants of the droplet model. 

Another approach is based on series analysis methods. (11-13) Recently, 
a long low-temperature series was derived (13) at two specific temperatures. 
This series was used in Ref. 11 to calculate the coefficients of the power 
series expansion of the magnetization re(H) in powers of H. The resulting 
series is apparently divergent and the nature of the divergence is consistent 
with the predictions of the field theoretic droplet model type calcula- 
tions. (14) The presence of the singularity at H = 0 was confirmed by the 
analysis (12) of the high-field series at two specific temperatures. 

These recent series analysis O1-13) did not find an indication of another 
possible singularity: the spinodal line at H = Hsp(T ) ( 0 (we consider the 
case when the H ) 0 stable branch is continued to the H < 0 metastable 
region), which is conjectured on the basis of mean-field and other phenom- 
enological models. (15'16) It was apparently observed for T~-- T c- in high- 
temperature series analysis. (17'18) In fact the spinodal cannot be a physi- 
cally sharp singularity [such that the susceptibility X diverges as ( H -  
Hsp) -~] because when the correlation length ~ within the metastable phase 
exceeds the radius R of the critical droplet this phase is destroyed by 
fluctuations.(19) However, it may well be the case that there is a behavior 
characteristic of a smoothed second-order phase transition (as if the system 

d (20 21) were in a finite volume ~RH=H~p(r) ). It has been noted ' that for 
H ~--- Hsp (T), the description of metastable phase using an analytic continu- 



Analytic Continuation at First-Order Phase Transitions 207 

ation of equilibrium thermodynamic functions is not applicable and the 
dynamical nature of metastability becomes important. These observations 
were made on the basis of detailed dynamical considerations. (2~ By 
contrast in the analysis of finite power series the spinodal may manifest 
itself as a sharp singularity. (18'22~ 

A method of analytic continuation that uses the eigenvalues of the 
transfer matrix (TM) was suggested in Ref. 23 and was further developed in 
Ref. 24. The TM is defined for a finite N X oe strip with periodic boundary 
conditions. For N < 11 satisfactory agreement was found between the 
"metastable" magnetization calculated by this method and by Monte Carlo 
simulation. Information on the positions of "crossings" (regions of near 
degeneracy between different TM eigenvalues) suggested an essential singu- 
larity at H = 0. However, the low N intuition of the TM model probably 
breaks down for higher N values (as was found in a quantum mechanical 
model (25) with similar analytic properties). 

In the present work we develop in detail a new scheme of extrapola- 
tion of finite N results to the N ~  oe limit, a short account of which was 
presented in Ref. 19. In Section 2 a preliminary discussion is combined 
with an introduction of the necessary notation and with a summary of the 
relevant results on the properties of the TM eigenvalues (from the TM 
model (23'24) and from the exact solution (26'27) at H = 0). In Section 3 we 
complete the derivation of the formalism. 

In Section 4, we apply the method tO calculate numerically the first ten 
coefficients in the expansion of the magnetization in powers of H. We work 
with N's  up to N = 9. For such N values the calculation converges in the 
low-temperature range u < 0.3u c (where u ---= e - 4 B  and u c = 3 - 81/2) and 
we confirm the result of Ref. 11 on the divergence of the power series and 
thus the existence of the singularity of the droplet model type at H = 0. 

In Section 5, we calculate the first ten coefficients in the expansion of 
the magnetization in powers of a variable x = H - H 0, for various H 0 > 0 
(on the stable side). In the low-temperature range, we analyze the series for 
X'/X by the Pad6 method and find evidence for a spinodal. Its temperature 
dependence is studied. Our calculation is apparently the first study of the 
spinodal line in the low-temperature range. 

Our method relies heavily on the fact that the "mathematical mecha- 
nism" of the phase transition (long-range order) when N ~ ce in the d = 2 
Ising model is due to the asymptotic degeneracy between the two largest 
eigenvalues of the TM. This point was emphasized in Ref. 28, where a class 
of d = 1 and 2 models was studied. Our method is applicable to models 
with such an asymptotic eigenvalue degeneracy. In particular, it can be 
generalized to d-dimensional ferromagnetic spin systems with short-range 
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interactions, which will be approximated by N 1 X N 2 • �9 �9 �9 X N a_ 1 • oo 
"strips." 

Section 6 is a short summary. 

2. MIXING THE EIGENVALUES 

We consider the two-dimensional Ising model. The energy of the 
configuration {o} of the "spins" o/j = +1 on an N x M lattice (with 
periodic boundary conditions i + N ------ i a n d j  + M ~ j )  is 

N M 

E (o}  = -- E E OiJ'(Oi,j+l -]- Oi+l,j"[- H )  (2 .1 )  
i=l j=l  

The 2 u x  2 N TM is defined between two column configurations o--- 
(o I . . . . .  ON) and o' ~ (o' t . . . . .  o;v) 

1 (TM)ao, = (TM)o, = exp ~,  (oioi+ l + o'io[+ 1 + 2oio ~ + 1-1o i + Ho~) " 
i=1 

(2.21 
where B- -  1 / T  is the inverse temperature [note that ON+ l --= O 1 and o}+1 
-~ o~ in Eq. (2.2)]. The partition function Z of the N • M system and the 
free energy per spin f are 

2 N 

Z =  2 e-~E~a~ = Tr [ (TM)  M] = E X) N)u 
{o} j = l  

] fN• = - ( 1 / f l M N ) l o g Z  = - ( 1 / f l M N ) l o g  Xj (N)M 
1 

(2.3) 

(2.4) 

?,.(N) where x~N) are the eigenvalues of TM in nonincreasing order (~[N)> 
X(2 N) /> >/ �9 �9 �9 ). The free energy of the N • oo strip is obtained as a 
limit (M--> ~ )  of Eq. (2.4): 

f (N) = _ (1/f iN)log)~N) (2.5) 

We will now consider briefly the analytic properties of f(U~(H) for a 
fixed temperature in the range 0 < T < T c. ~k~N)(H) is a branch of the 
analytic function whose other branches are some of the lower )l)U)'s. The 
choice of the relevant )I)N)'s is simplified by the observation that they (and 
X~ N)) have eigenvectors which belong to the completely symmetric represen- 
tation of the group of symmetry operations of the TM. The TM is invariant 
under translations along the columns (due to periodic boundary condi- 
tions); this symmetry is discussed in Ref. 24. An additional symmetry is 
that of changing the order of spins in a column; ( o l , . . . ,  ON)--> 
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( a  N . . . . .  O1), We employed both symmetries in our numerical work; this 
restricts the number of the eigenstates that must be considered to 3, 4, 6, 8, 
13, 18, 30, 46 for N = 2 . . . .  ,9,  respectively. In the following discussion we 
mean by TM the restriction to the invariant subspace, and 

x}N) > Xz(N) > x~N) > . . .  (2.6) 

denote the eigenvalues in that subspace in decreasing order. The corre- 
sponding branches of the free energy analytic function are 

~(u) = _ (1 ~fiN)log ~)u) (2.7) 

Consider first the T---> 0 limit of thef/(N)'s. It easy to see from Eq. (2.2) 
that the fSU)'s at T = 0 are straight lines of the form 

2a j /N  + H b j / N  (2.8) 

where aj and b/are integers satisfying 

- g  < a/< N - [ 1 -  (--1)Y]/2, - N  < bj < N (2.9) 

[not all (aj, bj) pairs are realized]. 
The situation is illustrated in Fig. la, where the eigenvalues are plotted 

in the N = 3 case. The "stable" free energy f(N) is (for any N) 

f(1g)(T-->O) = - 2 -  [H[ (2.10) 

and corresponds to the lower of the branches - 2  • H. The eigenvalue 
which gives f(+g) = _ 2 -- H describes the stable branch for H / >  0 and its 
continuation to the H < 0 region. In both regions the corresponding 
eigenvector consists purely of the (+  + �9 �9 �9 + ) state. 

For small finite temperatures the situation changes appreciably only in 
the crossing regions (see Fig. lb for N = 3 case). The degeneracies are 
broken and to each near degeneracy there corresponds an exact degeneracy 
in the complex H plane at a pair of the complex conjugate branch points 
close to the real axis. For H ~ A  (N) (where A (N) is the size of the 
"central" near crossing between fl  (~) and f2 (N) at H -- 0; we discuss h (N) in 
detail later) the stable fl  (N) is the branch with the largest positive magnetiza- 
tion (m) N)= _f](N)), part a of f}zv)in Fig. lb, and the corresponding 
eigenvector is close to a pure ( + - - .  + )  state. On the negative side 
H ~< - h  (N) and between the relevant near crossings such an eigenvector is 
still associated with the branch of the largest positive magnetization, parts 
b, c, d o f f  (N), f(N), f(4 N) in Fig. lb. The path a ---> b ---> c --> d of Fig. lb, for 
example, may be followed continuously in the complex H plane and is 
presumably related to the metastable continuation. References 23 and 24 
may be consulted for further exploration of this program, numerical work, 
and a discussion of more complicated cases (e.g., the near crossing between 
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Fig. 1. (a) The free energy branches for N= 3 in the T~0  limit; (b) the free energy 
branches for N = 3 for a small T > 0 (the notation is explained in Section 2; superscript N is 
suppressed). 

more than two free energy curves). The single near-crossing picture breaks 
down (for fixed T > 0) at higher N values (z5) (for Ising model we found by 
explicit calculation of the first noncentral near degeneracy that the correct 
condition is N>> u -1, notethat  u~ - l~  6). The branch points in thecomplex 
H plane do not approach the negative H axis. (25) Therefore the identifica- 
tion of the metastable continuation along the real H < 0 axis runs into 
difficulties. Analytic continuation can still be performed using a dispersion 
relation but the domain of analyticity obtained in this way probably does 
not include the negative H axis. 

In order to perform analytic continuation to the metastable region 
H < 0 we must go directly through the complex plane. To perform such a 
continuation efficiently we first consider the following question: is f(l N) the 
best object to be used even on the stable side H /> 0? The answer is 
negative. (19) The reason for this is in that the derivatives Dkf(lN) (where 
D =-- 3 / 3 H )  behave badly at H = 0, and there is a region of nonuniformity 
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of size HA (N) at H = 0. In order to clarify this property, let us consider the 
following qualitative picture. 

In the infinite N system the H~-->- H symmetry is spontaneously 
broken: the free energyf consists of two branches f+ and f_  (Fig. 2a): 

f+ (H)  = f_  ( -  H )  (2.11) 

each one presumably has a metastable continuation (see Fig. 2a). Let us 
consider, however, the stable f as one symmetric function with a cusp at 

0 

b 

d 

f_/ 
f 

I, f l  

H 

H 

~t f l l  
H 

H 

J~ f i l l  
~b 

ir 

e /  ' fl H 

I 

. . . . . .  _J,f~ 

H 

g 

,~ f l I I  

I I I  
~ f l  

L_ 
H 

Fig. 2. (a -d)  The free energy f of the N = oo system and its derivatives f ' ,  f " ,  f ' " ,  respec- 
tively ( f  consists of two branches f_+ ); (e-h)  the free energy f t  N) of a finite N system and its 
corresponding derivatives f[, f~', f~" (superscript N is suppressed). 
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n = 0. In Figs. 2b-d we plot schematically the first three derivatives of f. 
f ' = - m  has a discontinuity (twice the spontaneous magnetization) at 
n = O. if', f " , . . ,  have contributions proportional to a ~ function and its 
successively higher derivatives (represented by arrows in Figs. 2c, d). For 
finite N the symmetric f(N) approximates this behavior, see Figs. 2e-h. 
f}N),,, f~U),,,.., perform rapid fluctuations in the vicinity of /4 = 0. In 
order to study this behavior quantitatively we note first that f(U) and f2 (~) 
are asymptotically degenerate at n = 0 in the N ~ m limit. The gap size 
A(N) is(26) 

&(N) = [ f(N)(0 ) _f(N)(o)]/20C e-C(T)N/N (2.12) 

(for fixed T < To) and vanishes much faster than other relevant "sizes" of 
the problem. In particular, we expect 

H~r cc const/N (2.13) 

where +_ Hir are H values at which f(U) encounters higher branches (Fig. 
lb). For large N this encounter of f(U) with f ( N )  . . . .  may not be a 
separate near degeneracy. Let us stress that Eq. (2.13) is not rigorously 
established, but is an assumption supported by the observation that the 
encounter of f2 (N) with higher branches is typical fluctuation ( ~ I / N )  
effect, and by the known fact (26) t h a t  f(N)(o)- fz(N)(0)cc 1/N plus the 
expectation that the f(U)'S have finite derivatives (magnetizations) outside 
the "mixing" region Inl = O(A(N)). Note also that for fixed N the T-->0 
limit of H;r is 2 / ( N -  1). 

The behavior off} N) a n d f  (N) for IHI < H~r is governed by the central 
near degeneracy. In this region f(,~) are effectively a two-level system and 
may be phenomenologically parameterized by the two eigenvalues of the 
matrix 

= (S'+ 
M (N) \ A(") f f f )  (2.14) 

where the functions f(+x)(H)= f(_N)(_ H) break the H~-->- H system in a 
way similar to that of the branches f_+ of f(~= ~). f~N) were introduced in 
Ref. 19 and on the real H axis are given by 

f(+_u) __ (f(u) + f(N))/2 -T sign(n) [(f(lv) _ f(iN))2/4 _ A(N)2]'/2 (2.15) 

We will discuss their properties in the complex H plane in detail in the next 
section. Here we consider the parametrization of f(,~): 

f ( j ,=( f (N)  +f(_N))/2 _T_l[(f(U)_f(_U))2/4 + A(N)2] 1/2 (2.16) 
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In terms of the symmetric functions 

F(N) = (f(+N) + f(_N))/2 (2.17) 

G(lV) = ( f(+N) _ f(_i))/2H (2.18) 

where G(N)(o) is finite, we have 

fl(,N)= F(N)(H) W-I[ H2G(N)2(H) + A(N)2]W2 (2.19) 

All the rapid N dependence is represented by A (i) H e - C N / N .  The deriva- 
tives of f(N) (and f2 ~ x)) have terms with increasing powers of the square 
root in the denominator. The functions G (N) and F (N) a r e  of the order of 
unity as functions of N, and are finite when H-->0. Therefore for [H[ 
= O(A (N)) the square root is proportional to A (N), and the kth derivative 
D ~fl (N) has a leading contribution of magnitude A (N)(1 -k). These terms are 
responsible for violent changes of D ~f~i) (Figs. 2e, f, g, h) at [H] = O(A (~)). 
Such behavior is easily visualized if we replace for small H the functions 
F (N) and G (N) by the first terms in their power series expansions (the 
notation for the coefficients will become clear in Section 3), 

F(N)(H)-~ f(+N)(o) -- x(+N)(O)H2/2, G(N)(H) --) --m(+N)(o) (2.20) 

f(N)---) f(U)(O) - x(+N)(O)H2/2 -[U2m(ff)2(0) + A(N)2] '/2 (2.21) 

and plot the first few derivatives of this function. 
In summary, we observe that the near degeneracy at H = 0 provides a 

mechanism for the fluctuations of D ?  (N) in the region O(A (N)) and of 
amplitudes (k/> 2)A (N)(l-k) cc e (k-l)cN �9 N k-1. These fluctuations of 
nkf[ N) approximate the -2Ira+ (O)IDk-26(H) term of Dkf (N=~176 In fact 
f}u) have actual crossings at a pair of branch points at H B p ~  
+_' iA (~v)/[m (N) (0)[. The above behavior causes a nonuniformity in the con- 
vergence of Dkf(lN) to the N---)oo limit Dkf+ for H > 0. At H ~ 0  
Dkf(N)-/-) D ?+  [in fact, D2P+7(N)(o ) = O, [D2Pf(N)(o)[ "-) ~].  

3, CONVERGENCE OF THE EIGENVALUE COMBINATIONS 
A T H = 0  

From the discussion of the preceding section it follows that for H > 0 
there are two contributions to the difference [Okf(N) -- D ? +  I- The first is 
the result of finite size effects. For periodic boundary conditions those are 
expected (29) to vanish like e -u/~. The second contribution arises from 
"mixing" effects, which are appreciable in the range ,'~,A(N) at H = 0. The 
origin of this contribution is a mixing between two branches f i  N), which are 
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Fig. 3. 

f ~(3) 
i ~' "3XOOt T4 

\ l ~ ,  / 1 3  Ix....~f [ ----.<../ 

J ' - ' X  J ' P "  
/ 

/ f~3 ) 
Modified free energy branches f(N) for N = 3. Solid section of f(+x) approx- 

imates f+  (details in Section 3). 

determined by the requirement thatf(,~ ) are the eigenvalues of M (N) of Eq. 
(2.14). In the complex H plane 

f(+_U) = ( f(2N) + f(lN))/2 + [ ( f(2N) -- f(N')2/4--  A(U)2]'/2 (3.1) 

where the argument of the square root is proportional to H 2 at H ~ 0 and 
thus f(u) are analytic at the origin; the branch of the square root which is 
proportional to - H is chosen in Eq. (3.1). On the real axis, f(+_N) [Eq. (2.15)] 
are two intersecting branches (Fig. 3). f(+_u) are free of the mixing effects, 
and f(+N) provides a better approximation to f+  for g >t 0 than f(N) does. 
Indeed, if for h (u) << IHI << 1, f(u)~f,(O) - m(+N)(O)[HI + O(H2), then for 
]HI << 1, f(+N)~f+ (0) -- m(+ N) (O)H + O(H2), and f(+N) reproduces correctly 
the cusp with the second branch f(_ N) . 

For H > O,f(N) is analytic (as is f+  ) and Dkf(u) converges to D~/+.  It 
is a straightforward exercise to show that D kf(+N) also converges to D kf+ for 
H > 0. For H = 0 the situation is more complicated because the Dkf(u) 
behave nonuniformly at H ~ 0  (see Section 2). We will now show that with 
several reasonable assumptions on the properties of f~N) the following is 
true: 

lim Dkf(+ N~ (0) = D~f + (0) = l imDkf(H)  (3.2) 
N--> ~ H$0 

This is the principal result of this section. First note that f~N) is analytic at 
H --: 0 and it does not have the branch points associated with the central 
near degeneracy (at HBp~ +--ih(g)/Im(+N)(o)l); this property follows di- 
rectly from Eq. (3.1). The singularities off(+ N) which are closest to the origin 
are expected to be at IHI~H;v when f(N) encounters higher branches 
f(3 u), f(4 N) . . . . .  Therefore we assume that we can find a constant P such 
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that f~+N) is analytic in a circle ]H I < P / N  in the complex H plane 
(arguments in favor of this assumption are the same as those given for 
H) cx 1 /N  and are not rigorous; see Section 2). Denote supll_ll<P/N(lf~+ N) 
(H) I) = S. Let us define a new function (for fixed H)  

F(Z)  = f~N~(z + H) -- f~+N)(H) (3.3) 

and consider it for IH[ < P / 2 N  and IzI < P/2N. We observe that both 
[H + Z] < P I N  and Inl < P/N ,  thus If(Z)l < 25 and F(Z) is analytic 
(for ]Z] < P/2N)  and F(0) = 0. By Schwarz's lemma (3~ we obtain (IHI, 
[Z I < P/2N)  

4S N Z] (3.4) rf~+N)(z + H) -- f~+N~(a)J < --fi- 

and (Z ---> 0) 

IDf~+N) ( H )[ < (4S/  P )N (3.5) 

Thus we have found a bound on Df~ W) in the circle In[ < P/2N. Repeat 
the same construction for Df~+ u), O 2f~+N) . . . .  and obtain by induction that 
for [H I, IZl < e /2kN 

2k( k + 3)/2 S 
IO~- ~r + H) - ok-lf~+N)(n)[ < pk NKIzI (3.6) 

and 2 

2k(k+ 3)/2S N k (3.7) 
IDkfLN)(H)[ <~ ek  

In order to prove the convergence of D ~+u) (0) to D kf+ (0) we choose some 
sequence that approaches the origin from the H > 0 side faster than 
1/N k+l but slower than A (N) cx e-CN/N. We choose 1/N1"+2: 

[Dkf<+Y)(o) - Dkf+ (0)1 < [Dkf<+U)(o) - Dkf~+N)(1/Nk+2)l 

+ IDkf+ (1 /N  k+2) - Dkf+ (0)1 

+ [Dkf~+n)(1/N k+2) -- D~f+ (1/Nk+2)] (3.8) 

When N-+ ~,  1IN k+2 is inside the circle [HI < p/2kN and thus the first 
term on the right-hand side is bounded by const.(1/Nk+2)N k+l= 
O(1/N) [we used Eq. (3.6)]. The second term is O(1/N k+2) because 
f+  (H) is infinitely differentiable O1) at H = 0 +. The last term in Eq. (3.8) 

2 The referee has pointed out that Eq. (3.7) can be improved by using Cauchy's inequalities: 
ID~'f~+U)(H)l < (2kk! s/pe)N k, for IHI < P/2N. The improved Eq. (3.6) now reads (again 
using Schwarz's lemma) ]Dkf~+N)(z + H)-  Dkf(+N)(H)[ < (2k+3k! s/pk+I)Ne+IIZJ, for 
tZl, Inl < P/4N. 
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may be simplified if we note that from the definition of f(+u) it follows that 
IDkf(+N)(H)- D?(N)(H)] or. A( N)2 for H >> A (u) . Therefore 

]Dkf(+N)(I/N k+2) -- Dkf+ (I/Nk+2)l 
= IDkf(N)(1/N k+2) -- Dkf+ (1/Nk+2)l + O(A (N)2) (3.9) 

and finally 

[Dkf(N)(o) -- Dkf+ (O)l = [Dkf(LN)(1/ N k + 2) -- Dkf  + (liNk+2)] + O(1 /  N ) 

(3.10) 

Thus a sufficient condition for D ~f(+N) (0) ~ D kf+ (0) is 

lim [Dkf~u)(1/N~+2) - Dkf+(1//N~+2)] = 0  (3.11) 
N - - ~  

or equivalently 

lim Dkf(1N)(l/Nk+2 ) = Dkf+ (0) (3.12) 
N--> oo 

The conditions given in Eqs. (3.11) and (3.12) have the simple physical 
interpretation that typical sizes of mixing effects in D kfl's (co e -CN/N)  are 
asymptotically smaller than any power of a typical fluctuation effect 
(co l / N ) .  This property is the last assumption that we make on the basis of 
our qualitative understanding of the mechanism of the building up of a 
phase transition in the N ~ oo limit. 

To show that D kf(+N) (0) ~ D kf+ (0) we needed several physically plau- 
sible assumptions on the properties of f l  (x). We added only one point H = 0 
to the domain of convergence. In practical calculations with finite N's the 
removal of the nonuniformity at H = 0 improves the rate of convergence 
for small positive H 's  as well, so that only finite size effects (co e-ZV/~) 
contribute to ]D?(+N)(H >~ O) -- Dkf  + (H >i 0)[. 

Note that use of f(+N) does not give a direct method of analytic 
continuation to the H < 0 region. However, the analytic continuation may 
be done indirectly, f(+N) provides rapidly convergent (with N) approxima- 
tions to f+ and its derivatives on the stable side H >/0. Calculating a finite 
number of derivatives at some H 0 >/0 we obtain a truncated power series 
which may be used for approximate analytic continuation by conventional 
series analysis methods. We follow this program in the following sections. 

Let us add a number of comments. First, the choice of f(+_N) is not 
unique; we may replace A (u) in Eqs. (2.14) and (3.1) by D (N)(H) such that 
D(N)(o) = A(N) and D(N)(H)/A(N) is of the order of unity for all H and 
N. Second, we considered the free energy branches fj(N) for which the 
derivatives have an intuitive association with magnetization and the size 
estimates (e.g., A (N) ~ e - C N / N )  are easy to visualize. However, it is possi- 
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ble to express the entire formalism in terms of other functions, for example 
the hj(N)'s. Both of these modifications introduce negligible (~A (N)2) cor- 
rections. With regard to using X(+ ~v) instead of f(+N) we checked numerically 
that the results of the following sections are not affected. 

4. B E H A V I O R  OF  THE P O W E R  S E R I E S  AT  H = 0 

We consider the following power series: 
o0 

m+ (H)= 1 + ~ GH ~ (4.1) 
n ~ O  

where m+ is the magnetization of the branch f+ (Fig. 2a) of the infinite 
system free energy, f (m = - f ' ) .  Characteristic temperature ranges of the 
problem are defined in terms of the low-temperature variable u = e-4B For 
fixed u < u c the coefficients c,, which are defined by 

Cn(U) .~" [ (--1/  n! )Dn+ 7+ ( H,!A) ]H_~O+--~nO (4.2) 

are approximated by 

= [(- 1/n!)D"+lf(J)(H,u)].=o- (4.3) 
The value of f~N)(H= 0) is also of interest (it approximates f+  (0)); both 
f+  (0) and c 0 are known from the exact solution. (26'27) 

Let us describe briefly our PL/1  computer program which performs 
the following calculations: 

1. Classification of the elements of the TM for the N • oo system; 
2. Construction of the subspace of states which are invariant under 

the symmetry operations discussed in Section 2; 
3. Calculation of the restriction of the TM to the invariant subspace 

and calculation of the eigenvalues f(u) and f(N) to about 30-figure accu- 
racy; 

4. Step 3 is performed at several H values near H = 0, and the 
polynomial that interpolates the values of f(+N) is used to calculate the first 
ten derivatives of f(+N) at H = 0. 
The large accuracy (step 3) in the fl(N) values is needed to avoid roundoff 
errors when we use a limited number of interpolation points (15) which are 
closely spaced (~10-2);  the number of times that step 3 is performed is 
further decreased owing to the symmetry of f~ N) and f2 (W). We discuss the 
accuracy of the derivative values later. We calculated up to N = 9 with 
reasonable computing times. For a given temperature it takes about  1�89 
hours on the IBM/370 Technion-IIT computer to calculate for N 
= 3  . . . . .  9. 
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Before considering in detail the results for some representative temper- 
atures let us summarize the convergence properties. We found that for 
N < 9 sufficiently accurate c o . . . . .  c 9 values are obtained in the tempera- 
ture range 

0 < u ~< 0.3 u~ (4.4) 

The convergence is faster for lower temperatures. This is connected with 
the fact that when T increases from zero toward T c finite size effects decay 
more slowly. The convergence is better for lower derivatives. This is not a 
special property of our procedure, but a general feature of the numerical 
approximation of derivatives using approximate values of a function. 

Let us discuss the results for some representative temperatures. The 
case u = 0.1u c is interesting because for this temperature the first 24 
coefficients c I . . . . .  r were obtained in Ref. 11 using a numerical resum- 
mation of the long low-temperature series of Ref. 13. Our values of c(~ N) for 
N = 7,8,9 were listed in Ref. 19, and good agreement with the values of 
Ref. 11 was found. In Table I we list some results for u = 0.05 uc. Here the 
rate of convergence is better than for 0.1u c (Ref. 19). The coincidence 
between the first figures of c~ (8) and (?(9) is already close to best possible 
before the roundoff errors manifest themselves, thus demonstrating the 
limits of the accuracy of our computational method. 

In Table II we list estimates of the c, 's  for u / u c  = 0.09, 0.15, 0.21, 0.27; 
one can follow the decrease in accuracy as u increases. For u / u c  = 0.06, 
0.12, 0.18, 0.24 we plot in Fig. 4 the ratios c , / c , _  i as functions of n (see 
Ref. 19 for similar plot for several other u values). The asymptotically 
linear divergence of c n / c  . _  l (see Ref. 11 and 19 and Fig. 4) implies that the 
radius of convergence of the power series [Eq. (4.1)] is zero. The nature of 
the essential singularity at H = 0, as implied by such linear behavior of 
c,,/c~_ 1, was discussed in detail in Ref. 11. In Ref. 14 it was shown to be 
consistent with field theoretic droplet model predictions. 

We consider now how such a singularity arises when N ~ m. There are 
two types of singularities in the problem. Intrinsic ones, which are the real 
singularities of the branches f_+ of f of the infinite system, and the cusp in f 
at H = 0. In the finite N system the cusp is approximated by the mixing of 

f(1 n) and f(2 N), which is associated with the pair of branch points in the 
complex H plane at H ~  +_ iA (N)/[m(+ N) (0)[ (notation of Section 2). Using 
f(+s) eliminates this pair of branch points. The next singularities of f(+s) are 
close to the real H axis and at Ittl~H/v where f2 (N) encounters higher 
fj(W)'s. For lower N these are single near crossings, and a "condensation" of 
the corresponding branch points to produce an essential singularity at 
H = 0 may be followed. (24) For larger N, however, the picture is more 
complicated(25); no general information on the distribution of branch 
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Fig. 4, Plot of c n / c  n_ 1 as a function of n for u / u  c = 0.06 (points), 0.12 (crosses), 0.18 (plus 
symbols) and 0.24 (open circles); only in the last case and for n = 8, 9 are error bars 
comparable to the size of the symbols (and are drawn). 

points in the complex plane is available. The only (nonrigorous) informa- 
tion is that the closest branch points lie at a distance - ~ H ~  1 / N  from the 
origin. The radius of convergence of the power series for f(+N) vanishes like 
1/N. The behavior of the ratios c~N)/c~N_] when N increases may  be 
followed visually for u close to 0.3u c where the convergence is relatively 
slow. For  u = 0.3uc the approach of the ratios c(N)/c (N) to linear behavior n I n - 1  

was plotted in Ref. 19. 
The range u ~< 0.3u~ corresponds to T~< 0.6T c. For  higher tempera- 

tures N < 9 Calculations provide accurate values for the first few deriva- 
tives. For example, when u = 0.5u c ( T ~ 0 . 7 2 T c )  only the first 4 c, 's are 
reasonably accurate. For u = 0.9u~ (T--~0.94T~) only f(0), c o and c I are 
obtained. Note that for 0.9u c c l , . . . ,  c12 were obtained in Ref. 11 by a 
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different method. As we already mentioned the slower convergence when 
T ~  T c- is due to larger finite size effects. 

5. S P I N O D A L  

Mean-field theories predict that the susceptibility diverges at some 
H = Hsp(T ) < 0 in the metastable phase according to ( H  - Hso) - l / z .  As 
for the usual second-order phase transitions such divergent susceptibility 
ought to be associated with a divergent ~ when H---)Hsp. In real systems 
with short-range interactions the existence of the spinodal is questionable. 
In Section 1 we mentioned arguments in favor of the expectation that the 
spinodal (if it exists) is a smoothed singularity. However, in the analysis of 
short power series an apparently sharp singularity may be observed. (18'22) 
Explicitly, we try to fit (for H--) H ~ )  

m+ ( H )  ~ const(H - H w ) l - ~ +  (less singular terms) (5.1) 

where 0 < ~ < 1 on the basis of mean-field intuition that m is finite at Hsp 
and the susceptibility diverges [X~ 1 / ( H  - Hsp)a]. 

Singularities of the form of Eq. (5.1) are usually studied by the Pad6 
method. The origin of the difficulties in observing the spinodal by series 
analysis methods in the d = 2 Ising model is that even if we neglect the 
smoothing it is a weak singularity (we will find later that o is small). In the 
power series in H the coefficients % are dominated by the factorially 
growing dropletlike contribution, and the spinodal is difficult to detect. Let 
us consider a more general power series 

m = 1 + ~ C , ( / - / -  H0)", H0 > 0 (5.2) 
n = 0  

We may hope to observe the spinodal if it is possible to choose H 0 
sufficiently small, such that the H < 0 behavior can be detected in a short 
power series, but still sufficiently far from H = 0, such that the power series 
is not dominated by the singularity at H -- 0. The function that is studied 
by the Pad6 method is 

X ~ _ m ~ - - o  
- -  + (less singular terms) (5.3) 

X m' H - Hsp 

The [L, M] Pad6 approximant is 

Ef=oa,( - [L,M] = M ( 5 . 4 )  
1 + ~ , m = , b m ( H -  Ho)"  

where aTs and b,,'s are calculated using the condition that the first 
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L + M + 1 coefficients in the expansion of [L, M] in powers of ( H  - H0) 
coincide with those of m"/rn'. We consider L + M = 5, 6, 7. 

Consider first fixed u = 0.1u c and varying H 0 = 0.05, 0.I0, 0.15, 0.20, 
0.30, 0.40. The method of calculating Co (N) . . . . .  C9 (N) is similar to that of 
Section 4, but H 0 > 0 is not a symmetry point, and more computer time is 
needed. The rate of convergence improves when H 0 moves away from zero. 
Most of the values of the Cn's used here were obtained with N < 8, some 
with N < 9 (we will later discuss in detail the convergence of the c~N)'s at 
fixed H o = 0.1). For H 0 = 0.00, 0.05, 0.10, 0.15, 0.20 the majority of poles 
and zeros of the [L, M]'s lie on the negative H axis, suggesting a branch cut 
along the negative H axis. But Pad6 analysis does not ensure that this 
branch cut starts at H = 0. The ratio method (see Refs. 11 and 19 and 
Section 4) is preferable in studying the singularity at H = 0. For H0 = 0.30 
or 0.40 the tendency of poles and zeros to gather on the negative H axis 
nearly disappears and the short power series becomes insensitive to the 
weak singularity at H = 0. In the case of H 0 = 0.1 we clearly observe one 
stable pole at H values in the range 

Hsp ----- -0 .415  + 0.015 (5.5) 

The corresponding residues (which approximate - o) lie in the range 

o = 0.07 _ 0.02 (5.6) 

This pole also appears in some [L,M] 's  for H o = 0.05; 0.15. For H o = 0.2 it 
appears sporadically in some [L, M]'s (but the H values and the residues 
vary widely). For H o = 0.3; 0.4 there is no sign of it. In Fig. 5 we summarize 
the values of Hsp and o as observed in different Pad6 approximants for 
H 0 = 0.10; 0.05; 0.15. For u = 0.1uc a long series in powers of H(H o = 0) is 
available.(11) When this series is analyzed by the Pad6 method, we find that 
most of the zeros and poles lie on the negative H axis (an indication of the 
branch cut). The stable pole at Hsp of Eq. (5.5) does not appear in the lower 
(small L + M) [L, M]'s. However this pole is present in large number of the 
higher Pad6 approximants (L + M - - 2 2 , 2 1 ,  2 0 , . . .  ). TheHsvand o values 
fluctuate, but most of them fall in the range of Eqs. (5.5) and (5.6). 

It must be stressed that the identification of the stable pole that we 
observed as the spinodal singularity should be made with great caution. 
The spinodal, if it exists, is masked by the essential singularity at H = 0. 
The presence of the branch cut makes the applicability of the Pad6 method 
rather questionable and opens the door for systematic errors, especially 
when such a short series is analyzed. Support for the identification of the 
stable pole which we observed as evidence, of a spinodal comes from its 
reasonable temperature dependence (see below). Attempts to find evidence 
of some exceptional behavior of the gap sizes between TM eigenvalues at 
relevant H values give negative results. (19) 
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Fig. 5. The values of ~ and Hsp as obtained with several Pad~ approximants at u = 0.1u c for 
H o = 0.1 (points), H o = 0.05 (crosses), H o = 0.15 (plus symbols). 

We now describe the calculation of Hsp(U ) in the low-temperature 
range. For  all temperatures we use H 0 = 0.1 which was the most  successful 
value of H 0 at u = 0.1uc. As was already noted, the convergence of the 
C, (N) values (when N is increased) at H0 = 0.1 is better than in H 0 = 0 
calculations of Section 4, but  H 0 > 0 calculations require more  computer  
time. W h e n  calculating with N < 7 and N < 8 the C,, values are obta ined 
with reasonable accuracy in the temperature ranges 0 < u <~0.1uc and 
0 < u ~< 0.3u c, respectively. In  Tables I I I ,  IV, and V we list the coefficients 
c,  ~ ~ for three representative temperatures u = 0.02uc, 0.1 u~, 0.3 u~ for N = 7, 
8. The 0.1 u~ values are compared  with the estimates obtained by  resumma-  
tion of the (divergent) asymptot ic  series of Ref. 11 using those first partial 
sums of the series 

oo 

c ~ = ~  k c.~q0 
n = k  

which stabilize at  some C k value (higher partial sums fluctuate with 
increasing magni tude  because the series is divergent). Owing to the pres- 
ence of the factor  (~) the accuracy of the asymptot ic  approximat ion is 
worse for higher k 's  (see Table IV). 



Table III. The Coefficients C,, (N) of the Expansion 
m(+N) (H)  = 1 + ~ , , , C ( N ) ( H  - Ho)" for H o = 0.1, Calculated with 

N = 7 and 8 at u = 0 .02u~  

N = 7  N = 8  

Co 
C1 

G 
G 
c4 
c5 
C6 

G 
C8 

G 

- 1 .79171187315334  . . .  - 1 .79171187315348  . . .  • 10 - 5  

5 .1370861753304  . . .  5 . 1370861753314  . . .  x 10 - 5  

- 7 . 4 4 1 8 8 3 4 1 5 4 7 1 6  . . .  - 7 . 4418834154762  . . .  • 10 - 5  

7 .3382860114449  . . .  7 . 338286011427  . . .  X 10 . 5  

- 5 .65200056326  . . .  - 5 .65200056338  . . .  x 10 - 5  

3 .75781505519  . . .  3 . 75781505576  . . .  X 10 _5 

- 2 .3745025033  . . .  - 2 . 3745025054  . . .  • 10 . 5  

1 .567813730 . . .  1 .567813724 . . .  • 10 - 5  

- 1 . 1 6 0 0 7 1 3 0 . . .  - 1 .16007128 . . .  x 10 - s  

9 .8306057  . . .  9 .8306064  . . .  x 10 - 6  
i i l l  i i 

Table IV. The Coefficients C (N)  in the Case Ho = 0.1, u = 0.1u: (Estimates 
Based on the Resummation of the Series of Ref. 11 Also Listed) 

R e s u m m e d  

N = 7 N = 8 series o f  Ref .  11 

Co 
C~ 

G 
c3 
c4 
C5 

C6 
C7 
C8 
C9 

5 . 0 8 8 5 9 6 2 6 9 . . .  - 5 . 0 8 8 5 9 6 2 7 5 . . .  - 5 .08859 ( +  1) • 10 . 4  

1 . 0 9 7 4 1 2 2 6 6 . . .  1 . 0 9 7 4 1 2 2 7 2 . . .  1.09741 ( +  1) X 10 - 3  

1 . 2 5 7 0 7 3 9 . . .  - 1 . 2 5 7 0 7 4 0 . . .  - 1 . 25707 (_+1)  x 1 0  . 3  

1 . 0 7 8 0 7 1 6 8 . . .  1 . 0 7 8 0 7 1 9 1 . . .  1 .07807 ( +  1) X 10 - 3  

8 . 4 7 1 6 3 8 . . .  - 8 . 4 7 1 6 4 9 . . .  - 8 .47166 ( +  1) X 10 - 4  

7 . 0 9 0 2 5 . . .  7 . 0 9 0 3 0 . . .  7 .09028 ( + 3 )  x 10 - 4  

6.81741 . . .  - 6 . 8 1 7 6 0 . . .  - 6 .817 (_+ 1) • 10 - 4  

7 . 5 3 4 0 1 . . .  7 . 5 3 4 7 0 . . .  7.53 ( -+2)  x 10 - 4  

9 . 2 9 7 8 . . .  - 9 . 3 0 0 2 . . .  - 9.4 ( -+3)  X 10 - 4  

1 . 2 5 0 9 . . .  1 . 2 5 1 7 . . .  1.0 ( -+5)  X 10 - 3  
i ii 

Table V. The Coefficients Cn (N) in the Case H o = 0.1, u = 0.3u c 

N = 7  N = 8  

C o - 5 . 5 4 8 2 6 9 . . .  - 5 . 5 4 8 2 8 7 . . .  x 10 - 3  

C I 1 . 0 2 0 3 2 8 . . .  1 . 0 2 0 3 4 8 . . .  x 10 - 2  

C 2 - 1 . 1 7 3 5 1 . . .  - 1 . 1 7 3 6 5 . . .  x l O  2 

C 3 1 . 2 9 6 2 . . .  1 . 2 9 7 0 . . .  x 10 - 2  

C 4 - 1 . 6 6 5 6 . . .  - 1 . 6 6 9 7 . . .  x 10 - 2  

C 5 2 . 5 4 5 . . .  2 . 5 6 3 . . .  X 10 - z  

C 6 - 4 . 4 3 . . .  - 4 . 5 1 . . .  x 1 0  - 2  

C 7 8 . 5 1 . . .  8 . 8 1 . . .  x 1 0  - 2  

C 8 - 1 . 7 5 . . .  - 1 . 8 6 . . .  x l O - I  

C 9 3 . 8 2 . . .  4 . 2 2 . . .  • 1 0 - 1  
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I I I I I I I I I I 
0.01 0 . 0 4  0 .07 '  0.10 
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Fig. 6. Hsp as a function of u in the temperature range u < 0.1 u C. 

In the temperature range 0 < u < 0.1 u c we found that the N = 7 C~ 
values are sufficiently accurate and calculated Hw(u ) for 20 temperatures 
u/u c = 0.005, 0 . 0 1 0 , . . . ,  0.100. The results are summarized in Fig. 6. The 
values of the residues ( - a )  for all these temperatures fall in the range of 
Eq. (5.6), o is apparently constant in this temperature range and is far from 
the mean-field value o (MF) = 1/2. It seems from Fig. 6 that Hsp(U ) has a 
finite limit when u ~ 0, 

Hsp(U = 0 + ) = -0 .82  + 0.07 (5.8) 

This is also the case in the Curie-Weiss (mean-field) model 

F) = - r 0 ( 1  - r / 7 " 0 )  1 / 2  

+ (T/Z) log[(1  + (1 - T~ To)'~2)~(1 - (1 - r/To) 1/2) ] (5.9) 

The mean-field transition temperature T O may be considered an adjustable 
parameter which is determined by the position of the second-order phase 
transition. It may also be fixed in the low-temperature range as the value of 

- -  Hsp at T = 0. In the former case it is well known that the mean-field 
results do not describe correctly the behavior of the thermodynamic func- 
tions of the d = 2 Ising model at T ~  Tc both as functions of T and of H. 
We found that the mean-field result does not describe correctly the H 
dependence of mmetastable(H ) a t  H~Hsp (o :r o'(MF)). We found also that 
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the points of Fig. 6 cannot be fitted by the curve of the form of Eq. (5.9) 
with one adjustable parameter To. Thus the mean-field model does not 
describe the functional form of the T dependence of Hsp(T ) in the 
low-temperature range. 

In the temperature range 0 < u < 0.3u c we calculated C n values for 15 
temperatures u / u  c = 0.02, 0.04 . . . .  ,0.30 with N = 8. The values of o are 
apparently constant in this range of temperatures also and are in the range 

0.04 ~< o ~< 0.09 (5.10) 

[compare Eq. (5.6)]. The estimates of Hsp(U ) are summarized in Fig. 7 (this 
figure was included in Ref. 19 and is reproduced for completeness). It is 
interesting to compare our values with the scaling form of Hsp(T ) at 

0.6 

0.4 

-Hsp  

0.2 

! 

Q - . .  

I , , , I , , , I , , I i I 

0.02 0.10 O. 20 0.30 
u 

Uc 

Fig. 7. Hsp as a function of u in the temperature range u < 0.3u c . The scaling from of Ref. 18 
defines the range between the curves a and b. 
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T ~  T c- which was studied in Ref. 18 using the high-temperature series. The 
estimate 

tanh(/3Hsp ) ~ - (0 .39 + 0.20)(1 - T I T s )  ~5/8 (5.11) 

of Ref. 18 defines the range of Hsp values between the curves a and b in 
Fig. 7. The scaling form [Eq. (5.11)] is valid only in the T o  T c- limit. At 
our u~O.3uc  (T~<0.6Tc) temperatures the correction terms cannot be 
neglected. The behavior of Hsp (Fig. 7) that we found is consistent with the 
statement that it approaches the asymptotic form of Ref. 18 at higher 
temperatures. Finally, let us stress that the error bars in Fig. 6 and 7 
represent the spread of Pad6 approximant values. Systematic errors may be 
present owing to the branch cut. Also higher Cn's are obtained for the 
largest u values (u~0.3u~) with relatively low accuracy when N = 8 values 
are used (see Table V), and Hsp estimates may change slightly when more 
accurate calculation of Cn's at higher u values will be performed. 

6. SUMMARY 

We studied the problem of optimal approximation of the free energy 
and its derivatives close to the first-order phase transition in a case when 
the coexistence of two phases is associated with an asymptotic degeneracy 
of the two largest eigenvalues of some linear operator. The modified free 
energies f(+N) approximate the branches f+ of the free energy f(N=~o) and 
all the derivatives in the stable regions. Analytic continuation is performed 
using a truncated power series. For the d = 2 Ising model we confirmed the 
existence of the singularity at H = 0 and found evidence of a spinodal line 
of (smoothed) singularities. 
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